An Innovative Method for Identification of Dynamic Systems Based on LoLiMoT
نویسندگان
چکیده
There are many methods in identification developing every day. But identification of dynamic systems has still remained a complex open problem. One of the new effective methods of identification in nonlinear problems is identification with Neurofuzzy approach. Compared with classic neural network and wavelet network this method is faster and more accurate, demonstrated with an example in this paper. The main aim of this paper is developing a Locally Linear Model Tree based algorithm which can be used in structure identification. Our method inspired from the concepts utilized in definition of this Neurofuzzy network and its quality was shown by a bench mark structure identification problem.
منابع مشابه
Identification of Geochemical Anomalies Using Fractal and LOLIMOT Neuro-Fuzzy modeling in Mial Area, Central Iran
The Urumieh-Dokhtar Magmatic Arc (UDMA) is recognized as an important porphyry, disseminated, vein-type and polymetallic mineralization arc. The aim of this study is to identify and subsequently determine geochemical anomalies for exploration of Pb, Zn and Cu mineralization in Mial district situated in UDMA. Factor analysis, Concentration-Number (C-N) fractal model and Local Linear Model Tree (...
متن کاملUsing BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملParameter Identification of a Brushless Resolver Using Charge Response of Stator Current
Because of temperature independence, high resolution and noiseless outputs, brushless resolvers are widely used in high precision control systems. In this paper, at first dynamic performance characteristics of brushless resolver, considering parameters identification are presented. Then a mathematical model based on d-q axis theory is given. This model can be used for studying the dynamic b...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملAn Optimal Dynamic Control Method for an Isolated Intersection Using Fuzzy Systems
Traffic flow systems are nonlinear and uncertain, so it is very difficult to find their optimal points. In traditional traffic control systems, the traffic lights of crossings change in a fixed time period that is not optimal. On the other hand, most proposed systems are sufficiently capable of coping with the uncertainties of traffic flow. To solve this problem, there is a need to develop expe...
متن کامل